Brain Disorders/Neurological

Hyperbaric oxygen therapy protects against mitochondrial dysfunction and delays onset of motor neuron disease in wobbler mice.


Dave KR, Prado R, Busto R, Raval AP, Bradley WG, Torbati D, Perez-pinzon MA.

Department of Neurology, D4-5, University of Miami School of Medicine, P.O. Box 016960, 33101, Miami, FL, USA

The Wobbler mouse is a model of human motor neuron disease. Recently we reported the impairment of mitochondrial complex IV in Wobbler mouse CNS, including motor cortex and spinal cord. The present study was designed to test the effect of hyperbaric oxygen therapy (HBOT) on (1) mitochondrial functions in young Wobbler mice, and (2) the onset and progression of the disease with aging. HBOT was carried out at 2 atmospheres absolute (2 ATA) oxygen for 1 h/day for 30 days. Control groups consisted of both untreated Wobbler mice and non-diseased Wobbler mice. The rate of respiration for complex IV in mitochondria isolated from motor cortex was improved by 40% (P<0.05) after HBOT.

The onset and progression of the disease in the Wobbler mice was studied using litters of pups from proven heterozygous breeding pairs, which were treated from birth with 2 ATA HBOT for 1 h/day 6 days a week for the animals' lifetime. A “blinded” observer examined the onset and progression of the Wobbler phenotype, including walking capabilities ranging from normal walking to jaw walking (unable to use forepaws), and the paw condition (from normal to curled wrists and forelimb fixed to the chest). These data indicate that the onset of disease in untreated Wobbler mice averaged 36+/-.4.3 days in terms of walking and 40+/-.5.7 days in terms of paw condition.

HBOT significantly delayed (P<0.001 for both paw condition and walking) the onset of disease to 59+/-.8.2 days (in terms of walking) and 63+/-.7.6 days (in terms of paw condition). Our data suggest that HBOT significantly ameliorates mitochondrial dysfunction in the motor cortex and spinal cord and greatly delays the onset of the disease in an animal model of motor neuron disease.

Reprinted with Permission

Legal Disclaimer

The content and information provided within this site is for informational and educational purposes only. Consult a doctor before pursuing any form of therapy, including Hyperbaric Oxygen Therapy. The Information provided within this site is not to be considered Medical Advice. In Full Support of the F.D.A., Hyperbaric Oxygen Therapy is considered Investigational, Experimental, or Off Label.

Please consult with your Treating Medical Physician